Tactile Graphics & Inclusive Education

RICHIA GUPTA
IIT DELHI
Inclusive education happens when children with and without disabilities participate and learn together in the same classes.
Current Situation

- Most schools do not admit visually impaired children
- Educational text books do not have diagrams to support concept understanding
- Students are not able to go for higher secondary education in science/math

Reason

- Lack of tactile resource development facilities
- Lack of expert designers
- Lack of special educators
- Lack of automated and economical techniques for creating tactile diagrams
Need for graphics

- To enable students to understand concepts which require reference to diagrams in subjects like Math & Science with ease
- To make education in all schools and colleges inclusive
Centre of Excellence in Tactile Graphics

IIT DELHI
(Sponsored by Department of Information Technology (DEITY) of Govt. of India)
Projects

- Successfully Completed books
 - Physiology and Anatomy for training physiotherapists
 - Yoga for teaching yoga to visually impaired
 - Maps of India (Geography)
 - Introductory book on Economics
 - NCERT 9th Mathematics Book

- Work In Progress
 - NCERT 9th Science Book
Process

- **Positives**: Durable, Cost-effective, Great for Bulk manufacturing
- **Negatives**: Slightly complicated initial process of making mold
Process

Positives: Durable, Cost-effective, Great for Bulk manufacturing

Negatives: Slightly complicated initial process of making mold
Graphic Conversion

- **Simplification** - If the 2D diagram has too much detail then it is simplified by removing unnecessary detail and information.

- **Decomposition** - Process of dividing the information to be presented across a number of tactile diagrams to avoid overwhelming the readers.

- **Selection of view** - Tactile graphics portraying unusual viewpoints like perspective view, transparency could cause difficulty in comprehension.

- **Scaling** - Unnecessarily small and cramped diagrams can cause difficulty in comprehension. However, a large tactile diagram can make it difficult for the learner to get a sense of the whole.
Design Challenges

- Pictures for sighted people contain various artifacts that might be redundant or confusing to the visually impaired person
 - Decorative items – decorative borders, shadings etc
 - Colorful illustrations and artwork

- 3D views or Perspective – How an object reduce in size or become skewed

- Reflection and Transparency – object is occluded yet its visible

Fig. 13.26
Potential Research Questions

- How can the concept of depth be represented in tactile diagrams?
- How well can a person interpret different layers of information in tactile?
- Can we define tactile perception attributes analogous to visual perception attributes?
- How can different view points (perspective) be represented?
- How does a visually impaired person form a mapping between the spatial relationships in a diagram and spatial relationships in real world?
- How can we convey the scale of bigger objects like mountain, ocean etc?
- How the mind integrates and makes meaning out of the perceived piece-meal information?
Steps towards an Inclusive Future

- Investigating these research directions to make TG more effective
- Making graphics a part of the curriculum
- Making it affordable and easily available
- Making it accessible for blind as well as sighted
- Coming up with a standardized training and introduction program
- Teacher friendly material and training programs for teachers
- Reaching out to the largest blind population in the world
“THE ONLY THING WORSE THAN BEING BLIND IS HAVING SIGHT BUT NO VISION.”

HELEN KELLER